
Learning Affine Transformations of the Plane
for Model-Based Object Recognition

George Bebis t Michael Georgiopoulost, Niels da Vitoria Lobo I and Mubarak Shah I

+Depart ent of Electrical & Computer Engineering, University of Central Florida, Orlando, FL 32816
'Department of Computer Science, University of Central Florida, Orlando, FL 32816

Abstract
In this paper, we consider the problem of learning the

mapping between the image coordinates of unknown affine
views of an object and the parameters ofthe affine transfor-
mation that can align a known view of the same object with
them. A Single Layer Neural Network (SL-NN) is used to
learn the mapping. Although the proposed approach is con-
ceptually similar to other approaches in the literature, its
practical advantages are more profound. The views used to
train the SL-NN are not obtained by taking different pic-
tures of the object but by sampling the space of its affine
transformed views. This space is constructed by estimating
the range of values that the parameters of afine transfor-
mation can assume using a single view and a methodology
based on Singular Value Decomposition (SVO) and Interval
Arithmetic (U). The proposed scheme is as accurate as tra-
ditional least-squares approaches but faster. A front-end
stage to the SL-NN, based on Principal Components Analy-
sis (PCA), increases its noise tolerance dramatically and
guides us in deciding how many training views are neces-
sary in order for it to learn a good mapping.

1. Introduction
Affine transformations of the plane or 2-D affine

transformations have been widely used in in the area of
model-based object recognition [1]-[4]. Given an known
and an unknown view of the same planar object, there is an
affine transformation that can bring them into alignment. In
specific, if p is a point that belongs to the known view and
p' is a point that belongs to the unknown view, which are in
correspondence, then p' is related to p as follows:

where A is a non-singular 2x2 matrix and b is a two-
dimensional vector (6 parameters). For any affine view of a
planar object, there is a point in the six-dimensional space
of affine transformations which corresponds to the transfor-
mation that can align the known view with it (in a least-
squares sense). In this work, we consider the problem of
constructing a function that approximates this mapping. The
procedure consists of three main steps. First, we compute
the range of values that the parameters of affine transforma-
tion can assume. This is performed using Singular Value

?he research reported in this paper was partially supported
by NSF grant IRI-922M68 and NSF grant CCR-9410459.

Decomposition (SVD) [lo] and Interval Arithmetic (IA)
[5]. Second, we sample the space of affine transformations
and for each "sample" affine transform, we use the known
view of the object to generate a new affine transformed
view. Finally, we train a Single Layer Neural Network (SL-
NN) [6] to learn the mapping between the affine trans-
formed views (training views) and the affine transformation
which generated them.

Our work has been motivated by [7] and [SI. In [7],
the problem of approximating a function that maps any per-
spective view of a 3-D object to a standard object view was
considered. This function was approximated by training a
Generalized Radial Basis Functions Neural Network
(GRBF-NN). The training views were obtained by sampling
the viewing sphere, assuming that the 3-D structure of the
object is available. In [8], a linear operator was built which
distinguishes between views of a specific object and views
of other objects, assuming orthographic projection. This
was done by mapping every view of the object to a vector
which uniquely identifies the object. Our approach com-
putes the parameters of the transformation that can map the
input view to the known view. Obviously, all approaches
are conceptually similar. However, our interest here is to
benefit methods which operate under the hypothesize-verify
paradigm [1],[2]. In this context, it is important to compute
the affine transformation as accurately and fast as possible.
Accuracy is needed so that verification becomes less
ambiguous and speed is important since vast numbers of
hypotheses must usually be verified during recognition. We
show in section 4.1 that the accuracy of the proposed
scheme is as good as applying a traditional least-squares
scheme, such as SVD, while its speed is better.

An important advantage of the proposed scheme is
that the training views are not obtained by taking different
pictures of the object. Instead, they are affine transformed
views of the known view which are obtained by sampling
the space of affine transformed views which can be con-
structed using the known view only. On the other hand, the
approach in [7] can compute the training views easily only
if the structure of the 3-D object is available. Since this is
not very realistic, the training views must be obtained by
taking different pictures of the object. This, however,
requires more effort and time (edges must be extracted,
interest point must be detected, and point correspondences
across the images must be established). Another advantage
is that we do not consider both of the x- and y-coordinates
of the object points during training. Instead, we simplify the
scheme considerably by decoupling them and by training

1015-4651/96 $5.00 0 1996 IEEE
Proceedings of ICPR '96

60

the network using only one of the two. Then, during recog-
nition, the parameters of the transformation are predicted in
two steps.

Although our emphasis in this paper is to study the
case of planar objects and affine transformations, it is
important to mention that the same methodology can be
extended to the problem of learning to recognize 3-D
objects from 2-D views, assuming orthographic or perspec-
tive projection. The linear model combinations scheme [8]
and the algebraic functions of views [9] can serve as a basis
for this extension. In this case, the training views can be
obtained by sampling the space of orthographically or per-
spectively transformed views which can be constructed
using a similar methodology. Also, the decoupling of the
image point coordinates is still possible, even for the case of
perspective projection (assuming that the known views are
orthographic [9J).

The organization of the paper is as follows: Section 2
presents the procedule for estimating the range of values for
the parameters of the affine transformation. In Section 3, we
describe the methodology for obtaining the training views
and for training the SLNN. Our experimental results are
given in Section 4. Section 5 follows with our conclusions.

2. Estimating the ranges of parameters
If we assume that each planar object is characterized

by a list of "interest" points which may correspond, for
example, to curvature extrema or curvature zero-crossings,
we can rewrite (1) as follows:

where (x l r y 1) , (xz,y2), ... (xm,yn) are the coordinates of the
points corresponding to the known view and (x; ,y ;) , (x i , i 2) ,
... (x;.y,) are the coordinates corresponding to the
unknown view (we consider only the points that are com-
mon in both views). The above system of equations can be
split in two different systems which can be written, using
matrix notation, as follows:

P,Cl - P d (3)

pvc2 = Py' (4)
Both (3) and (4) are overdetermined and can be solved
using SVD [lo]. SVD produces a solution that is the best
approximation in the least-squares sense. Using SVD to
factorize P , we have:

P , - WT (5)
where both U and V are orthogonal matrices, while W is a
diagonal matrix whose elements wL' are always non-negative
(singular values). The solution of the above two systems is
c1 - P,p,. and c2 - P f p , . where Pf is the pseudoinverse of

P , which is P$ - W + U f , and W+ is also a diagonal mahi:
with elements l/w" if wi greater than zero and zero other
wise. The solutions of (3) and (4) are then given by:

(7

where Ui denotes the i-th column of matrix U and v
denotes the i-tb column of matrix V. The sum is restrictec
over those values of i for which wU H 0.

To determine the range of vales for the parameters o
affine transformation, we first assume that the image of thc
unknown view has been scaled so that its x- and y
coordinates belong to a specific interval. This is done b!
mapping the image of the unknown view to the unit square
In this way, its x - and y-coordinates are mapped in the inter
val [0, 11. To determine the range of values for the parame
ters, we need to consider all the possible solutions of (3
and (4), assuming that the components of the vectors in thc
right hand side are always restricted to belong in the inter
Val [O,l]. This can be done using Interval Arithmetic (IA
[5]. In IA, each variable is actually represented as an inter
Val of possible values. Given two interval variable!
t - [tl, t2J and r - [r l , rz] , their sum and product are definec
as [SI:

t + r - [t i + rl, t 2 + r2]

t * r = [min(tlrl, tlr2, t2r1, ~ 2) . m 4 1 r 1 , flr2, t2r1. t m)]

Applying intewal arithmetic operators to (6) and (7) insteac
of standard arithmetic operators, we can compute interva
solutions for c1 and c2 by setting p,.=[O,l] and py.=[O,l]. h
interval notation, we want to solve the systems pwc l= pf
and Pvc2=ply,, where the superscript I denotes an interva
vector. The solutions ci and ci should be understood tc
mean c:=[cl: Pycl=pr, , prep' , .] and c:= [c2: Pyc2=py,
p y 8 ~ p i .] . Since both interval systems involve the samc
matrix P , and pr, , pus assume values in the same interval
the solutions c: and ci will be the same. Thus, we conside
only the first of the interval systems in our analysis.

By merely applying the interval arithmetic operator:
to (6) we will most likely obtain a non-sharp interval soh
tion [l l] . An interval solution is considered non-sharp if i
includes many solutions which do not satisfy the problem a
hand (invalid solutions) [l l] . Sharp interval solutions an
desirable in our approach because they can save us timc
during the generation of the training views (see next sec
tion). One well known factor that affects sharpness is whei
an interval variable enters the computation of the samc
quantity more than once [111. This is actually the case wit1
(6). To make it clear, let us consider the solution for thc
i - t h component of c1 , 1 si s 3:

Clearly, each x i (1 s j s m) enters in the computation of ci

61

more than once. To avoid this, we factor out the x; and
apply the interval arithmetic operators to the next equation:

(9)

3. Learning the mapping
First, we generate the training views by sampling the

range of values that the parameters of affine transformation
can assume. The sampling procedure is straightforward: we
pick a sampling step and we sample the range of values
associated with each parameter. For each parameter, we
pick one of its sampled values and we form a set of sampled
parameter values. This set defines an affine transformation
which is applied on the known view to generate a new
affine transformed view.

Figure 1. Generation of the training views.

Although invalid solutions have been reduced, they might
not have been eliminated completely. Consequently, not
every solution in c{ and c: conresponds to pr. and py, that
belong in pf. and p i , [ll]. In other words, if we generate
affine transformed views by choosing the parameters of
affine transformation from the interval solutions computed,
then not all of the generated views (actually their interest
points) will lie in the unit square completely. These views
are invalid and must be disregarded as shown in Figure l a .

It is important to notice now that since the ranges for
(al1 ,al2, b,) are the same with the ranges for (a2, ,az2, b2),
the information generated for x] and y] will be the same.
Since it is redundant to generate the same amount of infor-
mation twice, we generate information only about the x-
coordinates (see Figure lb). In this way, the time and space
requirements of the scheme are significantly reduced. Fur-
thermore, a network of half the size is needed (see Figure
2b) which implies faster training. The only additional cost

due to this simplification is that the parameters of the trans-
formation must now be predicted in two steps: first, we
must present to the network the x-coordinates of the
unknown view to predict (ql, alz, bl) and then we must pre-
sent the y-coordinates to predict (021, U=, b2).

(I) (bl

Figure 2. (a) The neural network scheme, (b) the simplified
neural network scheme.

4. Experiments

4.1. Evaluation of SLNN's performance
Figure 3 shows the four different objects used in our

experiments and the "interest" boundary points extracted
(curvature extrema and zero-crossings). The computed
ranges of values for the parameters of affine transformation
are shown in Table 1. For each object, we generated a num-
ber of training views and we trained a SLNN to learn the
desired mapping. Back-propagation with momentum was
used [6]. The learning rate used was 0.2 and the momentum
term was 0.4. The network assumed to have converged
when the sum of squared errors between the desired and
actual outputs was less than 0.0001.

1

oa
Ob

OA

02

1

oa
Ob

0.4

0.2

0

Figure 3. The test objects used.

To evaluate the quality of the mapping computed by
the SLNN, we generated a number of test views per object,
by affinely transforming the known views choosing the
transformation parameters randomly. To ensure that the x -
and y-coordinates of the test views belong in [0,1], we
chose a random subsquare within the unit square and we

62

mapped the square enclosing the view of the object to the
randomly chosen subsquare. To find how accurate the pre-
dictions made by the SLNN are, we compared the parame-
ters of the predicted transformation with the parameters of
the actual transformation which we computed using SVD.
Also, we back-projected the known view on the test view
and we computed the mean-square error between the two
[1],[2]. Table 2 shows some affine transformations predicted
by a network trained with only 4 views in the case of
modell. These views were generated by sampling each
parameter's range at 6 points. Invalid views were not
included in the training set (see section 3). The actual affine
transformations are also shown for comparison. We also
show results using 73 training views which were generated
by sampling each parameter's range at 15 points.

Table 1. Ranges for theparameters.
I I

I m d 2 I IS I 1-1214.11141 1 I-11.4% 11ASI 1 1-1135.12.251 I

Table 2. Actual andpredicted affine transformations.
I I

Table 3 demonstrates the performance of the SLNN,
using various numbers of training views. For each case, we
report the number of points at which each parameter's range
was sampled to generate the specified number of training
views, the average mean square back-projection error, the
standard deviation of error, and the training time (epochs,
CPU time). The error was computed using 100 test views
for each object. The results indicate that the SL-NN is capa-
ble of approximating the desired mapping very accurately,
using a small number of training views (4-15 in our experi-
ments).

We also examined the computational requirements of
the SLNN, assuming that training is done off-line. If m is
the average number of interest points per model and n the
number of parameters (n=6), the SLNN requires nm multi-
plications and nm additions to compute the parameters of
the transformation. In the case of the traditional least-
squares approach we used here to compute the actual values
of the parameters (SVD [lo], p. 65), we need n(m + n) mul-
tiplications, tun divisions, and n(m t n) additions, assuming
that the factorization of P, has been done off-line. Since
these computations are repeated hundreds of times during
recognition, the neural network approach is obviously supe-

rior.

Table 3. Number of training views and average me.

I I I I I
1515.15 I n I am I ami I 16736 I i i 6 ~

I I

4.2. Discrimination power
The term "discrimination power" means the capabil-

ity of a SLNN to predict a wrong affine transformation if it
is shown a view belonging to an object which is different
form the object whose views were used to train it (object
specific networks). For each object, we used the SLNN
trained with the number of training views shown high-
lighted in Table 2 Since each network has a different num-
ber of input nodes, depending on the number of interest
points associated with the objects, it is practically impossi-
ble to present views with different number of interest points
to the same network. To overcome this problem, we have
attached a front-end stage to the SLNN, based on PCA
[101, for reducing the dimensionality of the input data first.
In this way, all the networks will have exactly the same
number of input nodes. PCA might have additional benefits
for the performance of the networks because the new inputs
are uncorrelated which implies faster training and probably
better generalization. Table 4 illustrates the results (100 test
views per model were used).

Table 4. Discrimination power of the networh.
I I m d l I m d 2 I & I d 4 I

4.3. Noise and occlusion tolerance
To test the noise tolerance if the method, we assume

that the location of each interest point can be anywhere
within a disc centered at the real location of the point and
having a radius equal to E . To test the networks, we used a
set of 100 test views and we computed the average mean

63

square back-projection error. The results obtained, assum-
ing that the front-end stage is inactive, show that the perfor-
mance of the networks is rather poor (Figure 4, solid lined).
More training views did not improve the results signifi-
cantly.

5
4
3
2
1
0
1

-2
-3

Figure 4. The average m e vs E.

Then, we tested the performance of the method assuming
that the front-end stage is active now. What we observed is
quite interesting. In cases where the performance of the
method was poor, we found that the number of non-zero
eigenvalues associated with the covariance matrix of the
training Views was consistently less than three. More train-
ing views did not improve the results, as long as the number
of non-zero eigenvalues remained less than three. Including
enough training views so that the number of non-zero
eigenvalues became three, resulted in a dramatic error
decrease. Even more training views did not help signifi-
cantly and the number of non-zero eigenvalues remained
three. The same observations were made for all the four
objects we used. We believe that the reason there are three
non-zero eigenvalues is related to the three unknown
parameters (for the x-coordinates) of the mapping we
approximate. Since the training views we pick might not
always be representative of the space of affine transformed
views, PCA can guide us in choosing a sufficient number of
training views so that the network can compute a good,
noise tolerant, mapping.

Assuming some of the interest points to be occluded
and the front-end stage to be inactive, resulted in a very
poor performance, even with one point missing. When the
front-end stage was activated, an improved performance
was observed but only when 2-3 points were missing at
most. This suggests that in order to deal with occlusion, it is
more appropriate to use groups of points in training.

4.4. Performance using real scenes
Here, we considered the real scenes shown in Figure

5. Point correspondences were established by hand. When a
model point did not have an exact corresponding scene
point, we chose the closest possible scene point. Also, when
a model point did not have a corresponding scene point
because of occlusion we just picked the point (0.5,0.5) (the

center of the unit square) to be the corresponding scene
point. For all the models present in the scenes, the transfor-
mation computed was quite good. Figure 5 illustrates the
results.

Figure 5. i%e real scenes used

5. Conclusions
We considered the problem of learning the mapping

from the space of object image coordinates to the space of
affine transformations. The proposed approach has more
practical benefits than similar approaches. Extensions to
the recognition of 3-D objects are currently being explored.

References
[l] Y. Lamdan. J. Schwartz and H. Wolfson, "Atline invariant

model-based object recognition", IEEE Trans. on Robotics
MdAutomatwn, vol. 6, no. 5, pp. 578-589, October 1990.

[2] D. Huttenlocher and S. Ullman, "Recognizing solid objecb by
alignment with an image", International Journal of Com-
puter Vuion, vol. 5, no. 2, pp. 195-212,1990.

[3] I. Rigoutsos and R. Hummel, "Several results on affine invari-
ant geometric hashing", Zn Proceedings of the 8th Israeli
Confmnce on Art$cial Intelligence and Computer vision,
December 1991.

[4] D. Thompson and J. Mundy, "Three dimensional model match-
ing from an unconstrained viewpoint", Proceedings of the
IEEE Conference on Robotics and Automation, pp.
u)8-220,1987.

[5] R. Moore, Interval anulysis, Prentice-Hall, 1966.
[6] Hertz. k Krogh, and R. Palmer, Zntduction to the theory of

neural computation, Addison Wesley, 1991.
[7J T. Poggio and S. Edelman, "A network that learns to recognize

three-dimensional objects", Nature, vol. 343, January 1990.
[8] S . Ullman and R. Basri, "Recognition by linear combination of

models", ZEEE Pattem Analysis and Machine Zntelligence,
vol. 13, no. 10, pp. 992-1006, October 1991.

[9] A. Shashua, "Algebraic Functions for Recognition", IEEE
Transactions on Pattem Analysis and Madtine Intelligence,
vol. 17, no. 8. pp. 779-789.1995.

[lo] W. Press et. a1 Numerical recipes in C: the art of scientific
programming, Cambridge University Press, 1990.

[ll] E. Hansen and R. Smith, "Interval arithmetic in matrix com-
putations: Part 11", SLAM Journal of Numerical Analysis,
vol. 4, no. 1,1967.

64

