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Abstract 
In this paper, we consider the problem of learning the 

mapping between the image coordinates of unknown affine 
views of an object and the parameters ofthe affine transfor- 
mation that can align a known view of the same object with 
them. A Single Layer Neural Network (SL-NN) is used to 
learn the mapping. Although the proposed approach is con- 
ceptually similar to other approaches in the literature, its 
practical advantages are more profound. The views used to 
train the SL-NN are not obtained by taking different pic- 
tures of the object but by sampling the space of its affine 
transformed views. This space is constructed by estimating 
the range of values that the parameters of afine transfor- 
mation can assume using a single view and a methodology 
based on Singular Value Decomposition (SVO) and Interval 
Arithmetic (U). The proposed scheme is as accurate as tra- 
ditional least-squares approaches but faster. A front-end 
stage to the SL-NN, based on Principal Components Analy- 
sis (PCA), increases its noise tolerance dramatically and 
guides us in deciding how many training views are neces- 
sary in order for it to learn a good mapping. 

1. Introduction 
Affine transformations of the plane or 2-D affine 

transformations have been widely used in in the area of 
model-based object recognition [1]-[4]. Given an known 
and an unknown view of the same planar object, there is an 
affine transformation that can bring them into alignment. In 
specific, if p is a point that belongs to the known view and 
p' is a point that belongs to the unknown view, which are in 
correspondence, then p' is related to p as follows: 

where A is a non-singular 2x2 matrix and b is a two- 
dimensional vector (6 parameters). For any affine view of a 
planar object, there is a point in the six-dimensional space 
of affine transformations which corresponds to the transfor- 
mation that can align the known view with it (in a least- 
squares sense). In this work, we consider the problem of 
constructing a function that approximates this mapping. The 
procedure consists of three main steps. First, we compute 
the range of values that the parameters of affine transforma- 
tion can assume. This is performed using Singular Value 

?he research reported in this paper was partially supported 
by NSF grant IRI-922M68 and NSF grant CCR-9410459. 

Decomposition (SVD) [lo] and Interval Arithmetic (IA) 
[5]. Second, we sample the space of affine transformations 
and for each "sample" affine transform, we use the known 
view of the object to generate a new affine transformed 
view. Finally, we train a Single Layer Neural Network (SL- 
NN) [6] to learn the mapping between the affine trans- 
formed views (training views) and the affine transformation 
which generated them. 

Our work has been motivated by [7] and [SI. In [7], 
the problem of approximating a function that maps any per- 
spective view of a 3-D object to a standard object view was 
considered. This function was approximated by training a 
Generalized Radial Basis Functions Neural Network 
(GRBF-NN). The training views were obtained by sampling 
the viewing sphere, assuming that the 3-D structure of the 
object is available. In [8], a linear operator was built which 
distinguishes between views of a specific object and views 
of other objects, assuming orthographic projection. This 
was done by mapping every view of the object to a vector 
which uniquely identifies the object. Our approach com- 
putes the parameters of the transformation that can map the 
input view to the known view. Obviously, all approaches 
are conceptually similar. However, our interest here is to 
benefit methods which operate under the hypothesize-verify 
paradigm [ 1],[2]. In this context, it is important to compute 
the affine transformation as accurately and fast as possible. 
Accuracy is needed so that verification becomes less 
ambiguous and speed is important since vast numbers of 
hypotheses must usually be verified during recognition. We 
show in section 4.1 that the accuracy of the proposed 
scheme is as good as applying a traditional least-squares 
scheme, such as SVD, while its speed is better. 

An important advantage of the proposed scheme is 
that the training views are not obtained by taking different 
pictures of the object. Instead, they are affine transformed 
views of the known view which are obtained by sampling 
the space of affine transformed views which can be con- 
structed using the known view only. On the other hand, the 
approach in [7] can compute the training views easily only 
if the structure of the 3-D object is available. Since this is 
not very realistic, the training views must be obtained by 
taking different pictures of the object. This, however, 
requires more effort and time (edges must be extracted, 
interest point must be detected, and point correspondences 
across the images must be established). Another advantage 
is that we do not consider both of the x- and y-coordinates 
of the object points during training. Instead, we simplify the 
scheme considerably by decoupling them and by training 
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the network using only one of the two. Then, during recog- 
nition, the parameters of the transformation are predicted in 
two steps. 

Although our emphasis in this paper is to study the 
case of planar objects and affine transformations, it is 
important to mention that the same methodology can be 
extended to the problem of learning to recognize 3-D 
objects from 2-D views, assuming orthographic or perspec- 
tive projection. The linear model combinations scheme [8] 
and the algebraic functions of views [9] can serve as a basis 
for this extension. In this case, the training views can be 
obtained by sampling the space of orthographically or per- 
spectively transformed views which can be constructed 
using a similar methodology. Also, the decoupling of the 
image point coordinates is still possible, even for the case of 
perspective projection (assuming that the known views are 
orthographic [9J). 

The organization of the paper is as follows: Section 2 
presents the procedule for estimating the range of values for 
the parameters of the affine transformation. In Section 3, we 
describe the methodology for obtaining the training views 
and for training the SLNN. Our experimental results are 
given in Section 4. Section 5 follows with our conclusions. 

2. Estimating the ranges of parameters 
If we assume that each planar object is characterized 

by a list of "interest" points which may correspond, for 
example, to curvature extrema or curvature zero-crossings, 
we can rewrite ( 1 )  as follows: 

where ( x l r y 1 ) ,  (xz,y2), ... (xm,yn)  are the coordinates of the 
points corresponding to the known view and (x; ,y ; ) ,  ( x i , i 2 ) ,  
... (x;.y,) are the coordinates corresponding to the 
unknown view (we consider only the points that are com- 
mon in both views). The above system of equations can be 
split in two different systems which can be written, using 
matrix notation, as follows: 

P,Cl - P d  (3) 

pvc2  = Py' (4) 
Both (3) and (4) are overdetermined and can be solved 
using SVD [lo]. SVD produces a solution that is the best 
approximation in the least-squares sense. Using SVD to 
factorize P ,  we have: 

P ,  - WT (5) 
where both U and V are orthogonal matrices, while W is a 
diagonal matrix whose elements wL' are always non-negative 
(singular values). The solution of the above two systems is 
c1 - P,p,. and c2 - P f p , .  where Pf is the pseudoinverse of 

P ,  which is P$ - W + U f ,  and W+ is also a diagonal mahi: 
with elements l/w" if wi greater than zero and zero other 
wise. The solutions of (3) and (4) are then given by: 

(7 

where Ui denotes the i-th column of matrix U and v 
denotes the i-tb column of matrix V. The sum is restrictec 
over those values of i for which wU H 0. 

To determine the range of vales for the parameters o 
affine transformation, we first assume that the image of thc 
unknown view has been scaled so that its x-  and y 
coordinates belong to a specific interval. This is done b! 
mapping the image of the unknown view to the unit square 
In this way, its x -  and y-coordinates are mapped in the inter 
val [0, 11. To determine the range of values for the parame 
ters, we need to consider all the possible solutions of (3 
and (4), assuming that the components of the vectors in thc 
right hand side are always restricted to belong in the inter 
Val [O,l]. This can be done using Interval Arithmetic (IA 
[5].  In IA, each variable is actually represented as an inter 
Val of possible values. Given two interval variable! 
t - [tl, t2J and r - [ r l ,  rz] ,  their sum and product are definec 
as [SI: 

t + r - [ t i  + rl, t 2  + r2] 

t * r = [min(tlrl, tlr2, t2r1, ~ 2 ) .  m 4 1 r 1 ,  flr2, t2r1. t m ) ]  

Applying intewal arithmetic operators to (6) and (7) insteac 
of standard arithmetic operators, we can compute interva 
solutions for c1 and c2 by setting p,.=[O,l] and py.=[O,l]. h 
interval notation, we want to solve the systems pwc l=  pf 
and Pvc2=ply,, where the superscript I denotes an interva 
vector. The solutions ci and ci should be understood tc 
mean c:=[cl: Pycl=pr, ,  prep' , . ]  and c:= [c2: Pyc2=py, 
p y 8 ~ p i . ] .  Since both interval systems involve the samc 
matrix P ,  and pr, ,  pus assume values in the same interval 
the solutions c: and ci  will be the same. Thus, we conside 
only the first of the interval systems in our analysis. 

By merely applying the interval arithmetic operator: 
to (6) we will most likely obtain a non-sharp interval soh 
tion [ l l ] .  An interval solution is considered non-sharp if i 
includes many solutions which do not satisfy the problem a 
hand (invalid solutions) [ l l ] .  Sharp interval solutions an 
desirable in our approach because they can save us timc 
during the generation of the training views (see next sec 
tion). One well known factor that affects sharpness is whei 
an interval variable enters the computation of the samc 
quantity more than once [ 111. This is actually the case wit1 
(6). To make it clear, let us consider the solution for thc 
i - t h  component of c1 ,  1 si s 3: 

Clearly, each x i  (1 s j s m )  enters in the computation of ci 
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more than once. To avoid this, we factor out the x; and 
apply the interval arithmetic operators to the next equation: 

(9) 

3. Learning the mapping 
First, we generate the training views by sampling the 

range of values that the parameters of affine transformation 
can assume. The sampling procedure is straightforward: we 
pick a sampling step and we sample the range of values 
associated with each parameter. For each parameter, we 
pick one of its sampled values and we form a set of sampled 
parameter values. This set defines an affine transformation 
which is applied on the known view to generate a new 
affine transformed view. 

Figure 1. Generation of the training views. 

Although invalid solutions have been reduced, they might 
not have been eliminated completely. Consequently, not 
every solution in c{ and c: conresponds to pr. and py, that 
belong in pf. and p i ,  [ll]. In other words, if we generate 
affine transformed views by choosing the parameters of 
affine transformation from the interval solutions computed, 
then not all of the generated views (actually their interest 
points) will lie in the unit square completely. These views 
are invalid and must be disregarded as shown in Figure l a .  

It is important to notice now that since the ranges for 
(al1 ,al2, b,) are the same with the ranges for (a2, ,az2, b2), 
the information generated for x ]  and y ]  will be the same. 
Since it is redundant to generate the same amount of infor- 
mation twice, we generate information only about the x- 
coordinates (see Figure lb). In this way, the time and space 
requirements of the scheme are significantly reduced. Fur- 
thermore, a network of half the size is needed (see Figure 
2b) which implies faster training. The only additional cost 

due to this simplification is that the parameters of the trans- 
formation must now be predicted in two steps: first, we 
must present to the network the x-coordinates of the 
unknown view to predict (ql, alz, bl) and then we must pre- 
sent the y-coordinates to predict (021, U=, b2). 

(I) (bl 

Figure 2. (a) The neural network scheme, (b) the simplified 
neural network scheme. 

4. Experiments 

4.1. Evaluation of SLNN's performance 
Figure 3 shows the four different objects used in our 

experiments and the "interest" boundary points extracted 
(curvature extrema and zero-crossings). The computed 
ranges of values for the parameters of affine transformation 
are shown in Table 1. For each object, we generated a num- 
ber of training views and we trained a SLNN to learn the 
desired mapping. Back-propagation with momentum was 
used [6]. The learning rate used was 0.2 and the momentum 
term was 0.4. The network assumed to have converged 
when the sum of squared errors between the desired and 
actual outputs was less than 0.0001. 

1 

oa 
Ob 

OA 

02 

1 

oa 
Ob 

0.4 

0.2 

0 

Figure 3. The test objects used. 

To evaluate the quality of the mapping computed by 
the SLNN, we generated a number of test views per object, 
by affinely transforming the known views choosing the 
transformation parameters randomly. To ensure that the x -  
and y-coordinates of the test views belong in [0,1], we 
chose a random subsquare within the unit square and we 
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mapped the square enclosing the view of the object to the 
randomly chosen subsquare. To find how accurate the pre- 
dictions made by the SLNN are, we compared the parame- 
ters of the predicted transformation with the parameters of 
the actual transformation which we computed using SVD. 
Also, we back-projected the known view on the test view 
and we computed the mean-square error between the two 
[1],[2]. Table 2 shows some affine transformations predicted 
by a network trained with only 4 views in the case of 
modell. These views were generated by sampling each 
parameter's range at 6 points. Invalid views were not 
included in the training set (see section 3). The actual affine 
transformations are also shown for comparison. We also 
show results using 73 training views which were generated 
by sampling each parameter's range at 15 points. 

Table 1. Ranges for theparameters. 
I I 

I m d 2  I IS I 1-1214.11141 1 I-11.4% 11ASI 1 1-1135.12.251 I 

Table 2. Actual andpredicted affine transformations. 
I I 

Table 3 demonstrates the performance of the SLNN, 
using various numbers of training views. For each case, we 
report the number of points at which each parameter's range 
was sampled to generate the specified number of training 
views, the average mean square back-projection error, the 
standard deviation of error, and the training time (epochs, 
CPU time). The error was computed using 100 test views 
for each object. The results indicate that the SL-NN is capa- 
ble of approximating the desired mapping very accurately, 
using a small number of training views (4-15 in our experi- 
ments). 

We also examined the computational requirements of 
the SLNN, assuming that training is done off-line. If m is 
the average number of interest points per model and n the 
number of parameters (n=6), the SLNN requires nm multi- 
plications and nm additions to compute the parameters of 
the transformation. In the case of the traditional least- 
squares approach we used here to compute the actual values 
of the parameters (SVD [lo], p. 65), we need n(m + n )  mul- 
tiplications, tun divisions, and n(m t n)  additions, assuming 
that the factorization of P, has been done off-line. Since 
these computations are repeated hundreds of times during 
recognition, the neural network approach is obviously supe- 

rior. 

Table 3. Number of training views and average me. 

I I I I I 
1515.15 I n I am I ami I 16736 I i i 6 ~  

I I 

4.2. Discrimination power 
The term "discrimination power" means the capabil- 

ity of a SLNN to predict a wrong affine transformation if it 
is shown a view belonging to an object which is different 
form the object whose views were used to train it (object 
specific networks). For each object, we used the SLNN 
trained with the number of training views shown high- 
lighted in Table 2 Since each network has a different num- 
ber of input nodes, depending on the number of interest 
points associated with the objects, it is practically impossi- 
ble to present views with different number of interest points 
to the same network. To overcome this problem, we have 
attached a front-end stage to the SLNN, based on PCA 
[ 101, for reducing the dimensionality of the input data first. 
In this way, all the networks will have exactly the same 
number of input nodes. PCA might have additional benefits 
for the performance of the networks because the new inputs 
are uncorrelated which implies faster training and probably 
better generalization. Table 4 illustrates the results (100 test 
views per model were used). 

Table 4. Discrimination power of the networh. 
I I  m d l  I m d 2  I & I  d 4  I 

4.3. Noise and occlusion tolerance 
To test the noise tolerance if the method, we assume 

that the location of each interest point can be anywhere 
within a disc centered at the real location of the point and 
having a radius equal to E .  To test the networks, we used a 
set of 100 test views and we computed the average mean 

63 



square back-projection error. The results obtained, assum- 
ing that the front-end stage is inactive, show that the perfor- 
mance of the networks is rather poor (Figure 4, solid lined). 
More training views did not improve the results signifi- 
cantly. 

5 
4 
3 
2 
1 
0 
1 

-2 
-3 

Figure 4. The average m e  vs E. 

Then, we tested the performance of the method assuming 
that the front-end stage is active now. What we observed is 
quite interesting. In cases where the performance of the 
method was poor, we found that the number of non-zero 
eigenvalues associated with the covariance matrix of the 
training Views was consistently less than three. More train- 
ing views did not improve the results, as long as the number 
of non-zero eigenvalues remained less than three. Including 
enough training views so that the number of non-zero 
eigenvalues became three, resulted in a dramatic error 
decrease. Even more training views did not help signifi- 
cantly and the number of non-zero eigenvalues remained 
three. The same observations were made for all the four 
objects we used. We believe that the reason there are three 
non-zero eigenvalues is related to the three unknown 
parameters (for the x-coordinates) of the mapping we 
approximate. Since the training views we pick might not 
always be representative of the space of affine transformed 
views, PCA can guide us in choosing a sufficient number of 
training views so that the network can compute a good, 
noise tolerant, mapping. 

Assuming some of the interest points to be occluded 
and the front-end stage to be inactive, resulted in a very 
poor performance, even with one point missing. When the 
front-end stage was activated, an improved performance 
was observed but only when 2-3 points were missing at 
most. This suggests that in order to deal with occlusion, it is 
more appropriate to use groups of points in training. 

4.4. Performance using real scenes 
Here, we considered the real scenes shown in Figure 

5. Point correspondences were established by hand. When a 
model point did not have an exact corresponding scene 
point, we chose the closest possible scene point. Also, when 
a model point did not have a corresponding scene point 
because of occlusion we just picked the point (0.5,0.5) (the 

center of the unit square) to be the corresponding scene 
point. For all the models present in the scenes, the transfor- 
mation computed was quite good. Figure 5 illustrates the 
results. 

Figure 5. i%e real scenes used 

5. Conclusions 
We considered the problem of learning the mapping 

from the space of object image coordinates to the space of 
affine transformations. The proposed approach has more 
practical benefits than similar approaches. Extensions to 
the recognition of 3-D objects are currently being explored. 
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